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Improving Performance on Tiered Memory with
Semantic Data Placement

Allen Aboytes and Pankaj Mehra

Abstract—Memory-intensive application working sets continue
to grow and demand more memory. Far memory technologies
such as CXL potentially solve the memory capacity bottleneck by
adding terabytes to system configurations. However, efficient use
of far memory requires careful data placement among memory
tiers. Recent work uses page-based memory tiering systems to
expand the memory available to applications. Unfortunately, most
state-of-the-art memory tiering systems largely ignore memory
allocation and prioritize placing pages in the fast tier while space
remains available. Relying on transparent methods for memory
allocation can lead to suboptimal data placement, resulting in
more data migration. To address these issues, we propose to
place data using application semantics to increase the locality
of reference within pages. We present M2T, a system that opti-
mizes the layout of application memory allocations by grouping
semantically related memory objects with a custom memory
allocator and migrates pages between local and far memory. Our
evaluation demonstrates that semantic data placement achieves
3.39–4.69× higher throughput than a key-value store that uses
a standard memory allocator on top of various state-of-the-art
memory tiering systems.

Index Terms—Memory tiering, memory allocation

I. INTRODUCTION

MEMORY-INTENSIVE applications such as Vector
Databases, machine learning inference, and in-memory

database management systems continue to demand more mem-
ory capacity from data centers. Traditional solutions to the
memory capacity bottleneck involve using storage, network
devices, or adding more memory devices to servers. However,
utilizing I/O is high latency compared to the speed of DRAM,
and adding more memory to servers is expensive and results
in stranded memory resources [1], [2]. Emerging technologies
such as non-volatile memories (NVM) or emerging intercon-
nect protocols such as Compute Express Link (CXL) [3]
present alternatives that are low latency and byte-addressable.

Promising technologies such as NVM or CXL memory
create a heterogeneous memory hierarchy due to their higher
latency and generally lower bandwidth than DRAM. The
memory provided by these devices is often referred to as far
memory; in this work, we refer to DRAM as local memory.
Efficient use of far memory depends on placing application
data in the right memory tier. Poor data placement decisions
can result in excessive trips to far memory and increased
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data movement, degrading performance. With heterogeneous
memory hierarchies becoming more prevalent, researchers
propose tiered memory systems to address such issues.

Memory tiering systems manage the placement of data on
heterogeneous memory hierarchies to increase the effective
memory capacity. Existing work [1], [2], [4], [5], [6] use a
combination of memory access profiling, memory classifica-
tion, and memory migration to place hot memory pages in
the fast tier (promotion) and cold memory pages in far mem-
ory (demotion) to improve fast memory capacity utilization.
However, state-of-the-art memory allocators and kernel page
allocators can have suboptimal placements due to their trans-
parent methods for data placement. Many systems (e.g., Linux)
allocate fast tier memory first by default; consequently, hot
data may be placed initially in far memory as fast memory
capacity diminishes, resulting in more data migration.

We present Mnemonic Memory Tiers (M2T), a system
that optimizes memory allocation placement using semantic
data placement. M2T groups semantically related data with
a custom memory allocator (mnalloc) and migrates pages
between local and far memory. In summary, the contributions
of our study are:

• The design of M2T as a programming system to optimize
memory layout, combined with tiered memory.

• An evaluation of a key-value store that uses mnalloc to
optimize data placement with tiered memory.

II. RELATED WORK

Tiered memory systems aim to keep frequently accessed
data in the fast tier, with many state-of-the-art approaches
focusing on transparent data placement [1], [2], [4], [5], [6],
[7]. For example, Lagar-Cavilla, et al. [7] uses the OS swap
path to store compressed DRAM while systems like TMTS [2]
dynamically migrate pages informed by memory profiling.
Previous work has explored placement of small (i.e., 4 KB)
pages, huge (e.g., 2 MB) pages, and memory regions with
multiple pages as implemented in TPP [1], Memtis [4], and
PET [6] respectively. Transparent page placement techniques,
however, can suffer from suboptimal memory object placement
due to the default first-touch policy for page allocation.

Many proposals consider memory object placement through
custom memory allocator interfaces [8], [9], [10], data
structures [11], or by intercepting memory allocations [6].
Carbink [11] introduces a programming model that swaps ob-
jects to and from network-based far memory. Medius [10] is a
locality-conscious allocator that places data using programmer
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Fig. 1. Semantic Memory Tiering System Architecture. A layered approach
combines a specialized memory allocator with a memory tiering system.

hints. Samsung SMDK [12] and SK Hynix HMSDK [13]
provide custom allocators that map allocations to memory
pools on different devices. Transparent tiering systems, such
as PET [6], manage placement at a coarse granularity by
intercepting mmap calls. Tiering systems such as TMC [9] and
X-Mem [8] support fine-grained placement through modified
allocators. However, most of these systems do not dynamically
migrate pages between directly addressable memory tiers.

Tiered memory systems have primarily focused on page mi-
gration and profiling, largely overlooking memory allocation.
Our work instead considers memory object placement at fine
granularity, an underexplored area in tiered memory systems.
We propose a system that leverages application semantics,
specified at allocation time, to guide object placement while
still supporting runtime page migration. Traditional memory
allocators use the size of objects as a semantic for placement
on specific pages, but with tiered memory this can lead to sub-
optimal placement because the system lacks an understanding
of application semantics. By incorporating application seman-
tics into placement decisions, we can improve performance
through better locality of reference within pages.

III. SEMANTIC DATA PLACEMENT FOR TIERED MEMORY

As shown in Fig. 1, M2T is a semantic tiered memory sys-
tem that controls memory object placement using application
semantics, which are estimates of programmer intent based on
program characteristics, observed statically or dynamically.

A. Memory Allocation

M2T provides a custom memory allocator, mnalloc, that
allows users to influence static placement policies and manage
multiple arenas. Memory arenas are the logical locations where
related memory allocations are placed, acting as the unit of
locality. Each memory arena manages its own independent set
of pages and uses a linked list style allocator for memory
management. The Placement argument associates memory
objects with a memory attribute that encodes application
semantics, expressing to the system the program behavior from
the perspective of its data.

Memory attributes describe functional and non-functional
properties that guide the placement of memory objects. Func-
tional properties express rules that must be followed by the
system, such as the spatial locality attribute NextTo, which
places one object near another. Non-functional properties
describe preferred placement characteristics, giving the system

greater flexibility. For example, a data structure developer can
indicate the access frequency of memory objects as hot or cold.
In turn, M2T uses this knowledge to place memory objects in
their preferred memory tier.

The M2T prototype implementation showcases a mem-
ory attribute for spatial locality (NextTo(r)) that packs
application-level objects into the same memory arena. The
NextTo placement directive takes a virtual address (r) to
an existing allocation, and the allocator ensures that the
subsequent allocation is logically co-located with that object.
M2T achieves this by placing the new memory allocation in
the same memory arena as the existing memory object (Fig. 1).
Applications integrate with M2T by allocating memory using
the mnalloc library call.

B. Memory Tiering
M2T’s memory tiering component migrates application data

at runtime according to page access frequency, implemented
using Meta’s TPP system [1]. Memory migration is performed
in page-sized granules and does not disrupt the placement of
memory objects within pages. However, unlike TPP, migrated
pages contain related application data as determined by the
static placement decisions of mnalloc. Although pages allo-
cated to memory objects follow a first-touch policy, mnalloc
ensures that related objects are placed on the same page when
possible, or on neighboring pages within the same memory
arena, based on the semantic placement directive. A traditional
memory allocator, on the other hand, may scatter related
memory objects across the address space—for example, due
to allocations occurring at different times.

C. Case Study: Key-Value Store
We implement a multi-threaded key-value store TCP server

application to study the impact of semantic data placement
on system efficiency and performance. Internally, the server
uses a hash table to store key-value pairs and can configurably
use a hash table implementation with NextTo optimizations
or one allocating memory using a standard memory allocator.
The key-value store supports insert and lookup requests for
keys and values of any size. Multiple threads handle clients
concurrently, and each server thread can process multiple
client requests on the same connection.

The design for the hash table index in the key-value store
uses chaining for collision resolution. The hash table imple-
mentation in Rust is a fixed-sized array that stores the heads of
linked lists representing each bucket in the hash table. Each
bucket entry contains pointers to dynamically allocated key
and value data. We use NextTo to optimize the spatial locality
of nodes in each bucket by modifying the Rust standard library
linked list. Similarly, we use NextTo to direct M2T to place
key and value data for each bucket together. The optimized
hash table implementation uses mnalloc to place each bucket
in separate arenas and co-locates key-value pairs for each
bucket within the same memory arena.

Limitations: The usage of M2T requires developers to
analyze memory object characteristics to choose an appropri-
ate Placement directive. The current M2T prototype imple-
ments support only for NextTo, and its layered architecture
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Fig. 2. Throughput of a chained hash table key-value store for YCSB
workloads, normalized to using only far memory as baseline performance.

leaves migration policies unchanged. We plan to explore other
memory attributes and their interaction with page placement
policies in future work.

IV. EVALUATION

A. Experimental Setup

Our evaluation uses a CloudLab [14] Intel IceLake machine
with two 36 core CPUs, and 128 GB of RAM on each socket.
We use a NUMA node emulation of CXL by turning off all
cores on one socket, resulting in local/far memory tier latencies
and bandwidths of 84.6/156 ns and 176/55 GB/s. The fast
memory tier is limited to 64 GB, with all workloads running
on a single socket with hyperthreading disabled.

We compare the performance of M2T against TPP [1],
Nomad [5], Memtis [4], and a baseline that allocates all
memory in far memory (FarMem) using a key-value store ap-
plication. The key-value store that runs on M2T uses mnalloc
to semantically place data, and other baseline versions are
implemented with unmodified standard library components
using a traditional memory allocator to place data. M2T, TPP,
and Nomad use Linux kernel version v5.15-rc6, and Memtis
uses Linux kernel version v5.15.19. The fast tier capacity is
constrained for M2T, TPP, and Nomad by offlining memory
blocks, and by the use of cgroups for Memtis.

The Yahoo! Cloud Serving Benchmark (YCSB) suite [15] is
configured to load 85 million records into the key-value store
and execute 170 million operations during the run phase, with
keys drawn from a Zipfian distribution (default θ=0.99). The
client and server each use 32 threads, and the application mem-
ory footprint is approximately 109 GB. We evaluate multiple
YCSB workloads and configurations, reporting averages with
95% confidence intervals. We conduct detailed comparisons
with TPP to explain the performance characteristics of M2T.

B. Overall Performance

Varying Request Patterns: We ran the YCSB benchmark
workloads A, B, C, D, and F. Fig. 2 shows the performance
of our M2T prototype compared to representative baselines.
The mnalloc-augmented key-value store service performs the
best (3.39–4.69×) over various read and write access patterns
compared to baselines built with standard library components.
The performance benefit comes from the increase in spatial
locality of both nodes in each bucket and key and value data.
Placing data using NextTo increases cache efficiency, reduces
false sharing at the page level, and reduces page migration
activity. The memory tiering baselines are unable to optimize
placement smaller than a 4 KB page.
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Fig. 3. Average throughput for YCSB-C with varying Zipfian request skew.
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Fig. 4. Performance of each component of M2T, normalized to a baseline
with a traditional memory allocator and first touch page placement policy.
Results for mnalloc exclude proactive migration from TPP.

106 107

Pages Migrated

179,089

43,797,938

Promotions

106 107

Pages Migrated

206,934

43,738,348

DemotionsTPP M2T

Fig. 5. Promotion and demotion of TPP and M2T for YCSB-C at θ=0.99.

Varying Request Skew: We measure the performance of the
key-value store with the read-only YCSB-C workload with
keys sampled from a Zipfian distribution whose constant θ
we vary. Fig. 3 shows the throughput for workload C as a
function of θ ranging from 0.25 to 2.0. The results show that
semantic data placement improves performance even as the
request skew varies. At low skew, we see that M2T is 3.52–
3.87× faster than other systems, and at high request skew, the
performance difference is 2.36–2.65×. As the request skew
increases, meaning that the number of frequently accessed
keys decreases, the overall performance improvement of using
NextTo decreases. Despite that, our evaluation shows that
placing data with mnalloc provides more than a 2× speedup.

C. Understanding M2T Performance

Performance Breakdown: Fig. 4 shows the performance of
each component of M2T normalized to a baseline that uses
a standard memory allocator with no migration. Enabling
memory tiering through TPP improves performance from
2.3% to 14%. Optimizing the memory layout with mnalloc

and NextTo yields 3.86–4.14× speedups over the baseline.
When we combine semantic data placement with page migra-
tion (M2T), we observe modest improvements ranging from
0.05%–0.41% compared to using only mnalloc (no TPP).
Each technique contributes to the overall performance, but the
benefit comes primarily from mnalloc.

Page Placement Efficiency: We analyze memory tiering
event counters for M2T and TPP under YCSB workload C for
the default configuration to explain the observed performance
differences. M2T incurs only thousands of page migration
events (Fig. 5), reducing promotion and demotion activity
by 244× and 211×, respectively. In contrast, TPP exhibits
a high migration volume, indicating frequent page promotion
and demotion. Fig. 6 shows the migration rate, measured
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Fig. 6. Migration rate of TPP and M2T for YCSB-C at θ=0.99.

TABLE I
CACHE MISS RATES AND CACHE MISSES FOR YCSB WORKLOAD C

Cache θ TPP M2T

L1 % (#) 0.25 37.950 (5.065e+11) 16.110 (2.286e+11)
0.99 38.238 (5.070e+11) 16.776 (2.341e+11)

L2 % (#) 0.25 98.904 (5.013e+11) 70.720 (1.656e+11)
0.99 98.451 (4.986e+11) 71.131 (1.626e+11)

L3 % (#) 0.25 99.531 (4.969e+11) 99.546 (1.641e+11)
0.99 84.405 (4.178e+11) 82.309 (1.327e+11)

TLB % (#) 0.25 25.573 (4.007e+08) 2.690 (9.521e+07)
0.99 25.403 (4.081e+11) 2.743 (4.410e+10)

as bytes migrated per second. TPP incurs 180–310 MB/s of
migration overhead, while M2T sustains only 4–32 KB/s. This
disparity arises from the effectiveness of TPP’s page table
access-bit scanning and NUMA hint fault telemetry, which
are triggered by a larger number of L3 cache and TLB-
load misses. However, frequent migrations also amplify TLB
misses through address remapping and consequent TLB in-
validations [2]. Conversely, placing data with NextTo reduces
cache and TLB misses, giving M2T fewer opportunities to
detect memory accesses and reduce far-memory usage. As a
result, M2T performs relatively few migrations.

Cache Performance: Table I shows the cache miss rates
and cache miss events for YCSB workload C. We note that
the reported metrics only contain events for memory loads.
The key-value store that uses mnalloc has lower cache miss
rates overall. M2T at low skew (θ=0.25) shows 2.16× and 3×
fewer L1 and L2 misses, respectively. Although the L3 miss
rates are comparable, the unoptimized version using standard
library components experiences 3x more L3 cache misses.
The optimized version with NextTo maintains better TLB
performance with 9.25× fewer TLB misses. At higher skew
(θ=0.99), M2T achieves 2.28×, 3.06×, 3.14×, and 9.51×
fewer L1, L2, L3, and TLB misses than TPP.

The difference in cache performance arises from NextTo

object placement and reduced page migration activity. The
increase in cache hits is due to mnalloc co-locating items
within each hash bucket, enhancing locality during key-value
insertions and lookups. The reduction in TLB misses for M2T
stems from both mnalloc and fewer page migrations. Since
NextTo increases memory object locality within pages, it
reduces TLB misses and page table walks. By comparison,
TPP can only optimize locality at the page granularity within
the same memory tier. Frequent page migrations in TPP also
degrade TLB efficiency through expensive TLB invalidations
to update virtual-to-physical mappings.

Fig. 7 compares the memory accesses to cache, local
memory, and far memory for YCSB workload C at different
Zipfian request skews. We observe that mnalloc increases the
number of accesses that hit the cache by 41.24% (θ=0.25) and
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Fig. 7. Memory access breakdown for YCSB-C for θ=0.25 and θ=0.99.

31.85% (θ=0.99) over TPP. The results at low request skew
indicate that fewer cache hits are observed and more accesses
to memory occur (compared to θ=0.99), in particular TPP has
6% less accesses to cache, which mostly hit local memory,
and M2T has 2.22% less cache accesses of which 1.72% go to
local memory and 0.5% got to far memory. At low and default
request skew, M2T incurs more far memory accesses (2.14%
and 1.64%) than TPP (less than 1%), as fewer TLB misses
reduce the tiering layer’s ability to detect memory accesses.
Even though M2T experiences more far memory accesses,
improved cache hits have a greater impact on performance
because of the large latency gap between cache and memory.

V. CONCLUSION

M2T groups semantically related memory objects onto the
same pages—via a parameter in the memory allocator—and
migrates them together, improving locality and reducing mi-
gration overhead. M2T achieves 3.39–4.69× higher perfor-
mance than a key-value store with a standard allocator on
state-of-the-art memory tiering systems due to better cache
efficiency and reduced data movement.
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